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Chaotic noisy transport of electron pairs in a superconducting junction device �thermal-inertia ratchets� is
investigated. The study shows that when the temperature is low enough, the transport of the electron pairs can
be mainly chaotic; when the temperature is high enough, it can be mainly stochastic. By controlling the
temperature and the amplitude of the input ac signal, the current of electron pairs can be reversed.
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Recently, there has been an increasing interest in studying
the net voltage �1,2� �i.e., a nonzero dc voltage with a zero dc
current� and the dc current-voltage characteristics �3,4� in
Josephson junctions �superconducting junctions� with noise.
It is reported that asymmetric noise can produce a net volt-
age �1,2�, and dc voltage rectification �3,4�. We have shown
that correlated symmetric noise can also produce a net volt-
age �2,5�, which stems from a symmetry breaking of the
system induced by the correlation between additive and mul-
tiplicative noises. In Ref. �6�, Zapata et al. investigated the
dc current-voltage characteristics for an asymmetric dc de-
vice with three Josephson junctions �depicted in Fig. 1�
threaded by a magnetic flux and driven by a periodic signal
and additive noise. But they did not consider the case in the
presence of additive and multiplicative noise, especially the
case when the additive and multiplicative noises are corre-
lated. In Ref. �7�, we studied the net voltage, the dc current-
voltage characteristics, and the mean first passage time for
this device in the case of environmental perturbation, to-
gether with thermal fluctuation. �The environmental pertur-
bation can be described by multiplicative noise in the Lange-
vin equation �8–10�, and the thermal fluctuation by additive
Gaussian white noise �11�.�

However, all of the above work was focused on Josephson
junctions in the overdamped limit. In this paper, we will
study the flux of the electron pairs of the device �6,7� in the
underdamped case, and try to get the properties of the trans-
port of the electron pairs. We focus on this device �see Fig.
1� formed by Josephson junctions whose phase is a classical
variable and which can be adequately described by the
“resistively shunted junction” model �12,13�. Thus, the phase
�i across Josephson junction i on the left arm obeys the
equation �i=1,2�

Il�t� = Ji sin��i� +
�

2eRi
�̇i +

�Ci

2e
�̈i, �1�

where Il�t� is the current through the left arm, and Ri, Ci, and
Ji are the resistance, capacitance, and critical current of junc-
tion i. For simplicity, we assume here that the two junctions
in series are identical. We take C1=C2=2Cl, R1=R2=Rl /2,
and J1=J2=Jl. The total voltage drop across the two junc-
tions is V=V1+V2, where Vi= �� /2e��̇i. If �1�t� is a solution
for the first junction, then �2�t�=�1�t�=�l�t� /2 is also a so-

lution for the second junction �14�. This implies V= �̇l� /2e,
with �l satisfying the equation

Il�t� = Jl sin��l/2� +
�

2eRl
�̇l +

�Cl

2e
�̈l. �2�

Hence, a series of two identical Josephson junctions can be
described by the same equation as a single junction, with the
only difference that in the sine function the argument � /2
��=�l� occurs �15�. On the right arm, the phase across the
single junction obeys an equation that reads as in Eq. �1�
with the labels l and i replaced by r. The total current
through the device is I�t�= Il�t�+ Ir�t�, which is marked in
Fig. 1. Here, we assume that the loop inductance L is very
small �i.e., LI�t���e; �e is the external magnetic flux�
and the length of the loop of the device is much larger
than the penetrating depth of the electron pairs. Then, the
phase around the loop yields �l−�r=−�e+2�n, with
�e=2��1 /�0 ��0= �

2e
�. So the phase satisfies the equation

�C

e
�̈ +

�

eR
�̇ = − Jl sin

�

2
− Jr sin�� + �e� + I�t� , �3�

in which �=�l, Rr=Rl=R, and Cr=Cl=C.
After considering the thermal fluctuation, Eq. �3� becomes

FIG. 1. The three-Josephson-junction device.
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�C

e
�̈ +

�

eR
�̇ = − Jl sin

�

2
− Jr sin�� + �e� + I�t� + ��t� ,

�4�

where ��t� is the thermal Gaussian white noise with zero
mean and correlation ���t���t���=2D��t− t��, with D propor-
tional to the temperature T.

Next we feed the circuit with an ac current
I�t�=a cos 	t. Then after assuming �=�+4��x−x0�, �e

=� /2, and Jr=Jl /2, Eq. �4� reads

mẍ + 
ẋ = f�x� + a cos 	t + ��t� , �5�

in which f�x�=−Jl�cos 2��x−x0�+ �1/2�cos 4��x−x0��,
m=4��C /e, and 
=4�� / �eR�. The potential U�x� in Eq. �5�
��xU�x�=−f�x�� is a ratchet, which has been the subject of
extensive recent studies �16�.

In the absence of noise �D=0�, Eq. �5� has a variety of
trajectories which can be obtained by numerical integration.
Here what we are interested in is the chaotic trajectories
produced by Eq. �5� in the absence of noise by controlling
the parameters. For D=0, 	=0.67, m=1, 
=0.1, x0=−0.19,
and Jl=0.0995 �we fix these parameters throughout this pa-
per�, and values of a in 0�a�10, where the system exists
on chaotic attractors, there is always a net drift of electron
pairs to the right or to the left, i.e., electron pairs move on
average either to the left or to the right. In the presence of
noise �D�0�, the situation is different. Now the trajectories
described by Eq. �5� begin to show a very complex behavior
�chaotic noisy behavior� for the above fixed parameters of
the system.

For the convenience of analysis and calculation, we write
Eq. �5� as

ẋ = y, ẏ = −

y

m
+ g�x� +

a

m
cos 	t +

1

m
��t� ,

where g�x�=− 1
m f�x�. In the Stratonovich case, the Fokker-

Planck equation for the probability density P�x ,y , t� corre-
sponding to Eq. �6� is

�tP = − y�xP − �y�−
1

m
y + g�x��P +

1

m
�D + a cos 	t��y

2P .

�6�

Equation �6� cannot be solved analytically even for the sta-
tionary case since detailed balance is broken and the prob-
ability flow is not zero, but it can be solved by applying
numerical methods. In the following we carry out our nu-
merical simulation directly using the Langevin equation �5�.
From Ref. �17� we can get the numerical algorithm

x�t + �t� = x�t� + y�t ,

y�t + �t� = y�t� + �−
1

m
y�t� + g„x�t�… +

a

m
cos 	t��t

+ x�t,�t� , �7�

where x�t ,�t�=r	2D�t /m, with a Gaussian random number
r of zero mean and variance 1. Here we define the current J

which is averaged over an ensemble of initial conditions for
the average velocity. Therefore, the current has two different
averages. The first average is over M initial conditions,
which we take equally distributed in space �from x=0 to 4��,
and with a zero initial velocity. For a fixed time tj, we can
obtain the first average v j = � 1

M
�
i=1

M ẋi�tj�. The second average
is a time average. Since we take a discrete time for the nu-
merical simulation, we have a discrete finite set of N differ-
ent times tj. Then the current is defined as J= �1/N�
 j=1

N v j.
The numerical results are plotted in Figs. 2�a� and 2�b� for

the current versus the noise strength and the current versus
the amplitude of the ac input signal, respectively. Every point
in the figures is calculated by taking the average of the
M =400 initial conditions and the N=105 different discrete
times �averaged by 4
107 points�. Here the time step is
taken as �t=0.01. In order to guarantee that the system is in
the stationary state, we take the time average after t=1000.
This average is taken from t=1000 to 2000. The space
from x=0 to 4� is divided into 400 �xi=4�i /400,
i=1,2 , . . . ,400�. The initial conditions are xi�t=0�=0
�i=1,2 ,3 , . . . ,400�. In Fig. 2�a�, we plot the current versus
the logarithm of the additive noise strength for a=0.04,
0.074, 0.078, 0.0815, and 0.084, respectively, with the
fixed parameters 	=0.67, 
=0.1, m=1, x0=−0.19, and
Jl=0.0995. The figure shows that when the noise strength is
small enough, the properties of the transport of the electron
pairs are controlled by chaos of the system; when the noise

FIG. 2. �a� The current J versus the logarithm of the noise
strength D for a=0.04, 0.074, 0.078, 0.0815, and 0.084, respec-
tively, with the fixed parameters 	=0.67, 
=0.1, m=1, x0=−0.19,
and Jl=0.0995. �b� The current versus the amplitude a of the ac
input signal for D=10−6 with 	=0.67, 
=0.1, m=1, x0=−0.19, and
Jl=0.0995.

JING-HUI LI PHYSICAL REVIEW E 74, 011114 �2006�

011114-2



strength is large enough, the properties of the transport of the
electron pairs are controlled by the noise. Because the ther-
mal Gaussian white noise is proportional to the temperature
T, we can say that, if the temperature is low enough, the
transport of the electron pairs is mainly chaotic �controlled
by the internal chaos of the system�; if the temperature is
large enough the transport of the electron pairs is mainly
stochastic �controlled by the temperature�. There is a critical
value D0 of D �D0�10−3.4�. When D�D0, by varying the
values of the amplitude of the input oscillatory signal, we
can get different values of the current; but, when D�D0, the
values of the current are almost unvaried for different values
of a �except for the values of a in Fig. 2�a�; we have also
simulated a lot of values of a from 0 to 10 and the study
shows that the system has the same behavior�. We call D0
“the critical value” of the chaotic noisy transport of the elec-
tron pairs. By controlling the values of a and D �or the tem-
perature�, we can reverse the transport of the electron pairs.

In Fig. 2�b�, we present the current J versus the amplitude a
of the input oscillatory signal for D=10−6 with the above
fixed parameters. This figure represents the appearance of
current reversal of the electron pairs, by controlling the
values of a. In this figure, we only show a limited range
of values of a, which ranges from 0.07 and 0.09. The
dependence of J versus a for a much broader range of a
values should be displayed �0�a���. When a is less than
0.07, with decreasing values of a, the current decreases
�when a=0, J=0�; when a is larger than 0.09, with the in-
crease of the values of a, the absolute current �J� decreases
�when a→�, J tends to zero�.

To illustrate clearly the properties of the chaotic noisy
transport of the electron pairs, in Figs. 3�a�–3�c� we depict
the Poincaré map for different values of D �D=10−6, 10−4,
and 10−2, respectively� with a=0.080 92 and the above fixed
parameters. In Fig. 3�a�, we can observe chaotic attractors in
the presence of noise; but with increasing noise strength, in
Fig. 3�b� the chaotic attractors are destroyed by the noise;
with further increase in noise strength, in Fig. 3�c� we cannot
observe the chaotic attractors, since they are completely de-
stroyed by the noise.

I have noted that the average current for the chaotic trans-
port of the particles has been studied for a periodic asymmet-
ric potential of the ratchet type in Ref. �18�. It has been
shown that the average current could exhibit sign reversals
�18�. Our study is different from the one in Ref. �18�. In Ref.
�18� only the case in the presence of chaos was considered,
while our study has considered the case under the presence
of noise and chaos. In addition, in Refs. �19,20�, Machura
and co-workers have considered Brownian motor transport
which satisfies Eq. �5� �only the potential ratchets are differ-
ent for Eq. �5� in our paper and the model studied in Refs.
�19,20��. But they considered only the case when the thermal
noise strength is larger than 10−2 in Ref. �19� and equals 10−3

or 5
10−3 in Ref. �20�, while in our paper, we have consid-
ered the case when the noise strength is smaller than 10−3

and larger than 10−6. So, in our paper, we have found that
there exists a transition from the chaotic regime to the sto-
chastic regime at a certain critical noise strength. But, in
Refs. �19,20�, this phenomenon was not found, since they did
not consider the case when the noise strength is smaller than
10−3.

In conclusion, we have studied the chaotic noisy transport
of electron pairs in a superconducting junction device, a
thermal-inertia ratchet. Study shows that when the tempera-
ture is low enough, the transport of the electron pairs is
mainly chaotic; when the temperature is large enough, it is
mainly stochastic. By controlling the temperature and the
amplitude of the input ac signal, we can reverse the current
of electron pairs. These results help in studies of supercon-
ducting junctions and the transport of particles for systems
with chaos and noise simultaneously.

This research is supported by the National Natural Sci-
ence foundation of China under Grant No. 10375009, SRF
for ROCS, SEM, and the K. C. Wong Magna Fund at Ningbo
University of China.

FIG. 3. The Poincaré map for different values of D �D= �a�
10−6, �b� 10−4, and �c� 10−2� with a=0.080 92 and the above fixed
parameters 	=0.67, 
=0.1, m=1, x0=−0.19, and Jl=0.0995.
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